

Adventure 1 Traveling with Mente

EPISODE

Pizza to go

Remember the properties of natural numbers and learn about the wonderful shapes called polygons.

EPISODE

Christmas packaging

Learn to calculate the perimeter of a polygon by adding and subtracting natural numbers.

EPISODE

4

What's wrong with Don Genaro?

Multiply natural numbers to find the area of quadrilaterals. cti Ready

Superpowers from previous grades

Before you start your adventure...

Use your knowledge on this adventure. Find the definitions of some useful words along the way.

>>ACTIVATE
your superpowers

Superpower: Multiplying
Multiplying two numbers means repeatedly adding one of the factors as many times as the other factor indicates. Review the
multiplication tables to activate this superpower.

Superpower: Identifying perimeters and areas

The perimeter is the length of the outline of a shape. The area is the quantity of space enclosed by a flat figure.

Superpower: Using frequency tables

A frequency table lets you organize data from surveys or statistical studies. This superpower lets you analyze the data found in each episode.

Free practice	Students
Taekwondo	12
Dance	8
Music	15

GUADALUPE IS GOING on a fantastic TRIP with her dAD AND Her cousin Mente. Join them on This first

Purale 1

The objects in the picture are easy to find. What shape are they?

Purale 3

Do you see the silver coin that has a regular polygon shape? If each side of the polygon is 1 cm , what is its perimeter?

Do you know what the objects in the picture are? Look carefully at them and you might find some clues.

Purale 4

Mente made fourteen groups like the one you see in the picture. Can you approximate how many coins he used?

EPISODE 1

Pizza to go

Mente teaches his cousin some interesting facts to make the time pass quickly while they wait for the pizza.

Set of natural numbers

The set of natural numbers hâs been used for millennia by many civilizations to count, sort, or code
Its notation is: $\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11, \ldots\}$

GET SUPERPOWERS

SUPERPOWER 1

Mente and Guadalupe remember that they can use $<,>$, and $=$ signs to order the natural numbers and find out who has more slices of pizza.

We say	We write	Note
75 "is greater than" 19	$75>19$	This also means that $19<75$.
0 "is less than" 5	$0<5$	This also means that $5>0$.
3 "is equal to" 3	$3=3$	All numbers are equal to themselves.

SUPERPOWER 2

Mente wants to have a milkshake with his pizza. He chooses the one with the least sugar. He can compare the two milkshakes by looking at their nutritional tables.

Delicious Milkshake	
Calories	66 kcal
Sodium	12 mg
Carbohydrates	12 g
Sugars	96 g

When we compare the amount of sugar in each milkshake by putting the amounts on a number line, we can see that 96 is found on the left of 102 , meaning that 96 is less than 102.

Tasty Milkshake	
Calories	67 kcal
Sodium	10 mg
Carbohydrates	10 g
Sugars	102 g

 By one, FROM LEET TO RIGHT, LOOKING FOR A DIFFERENCE.

Order of natural numbers

Given two natural numbers, a and b, they can only meet one of the three conditions of the natural number order relationship.

1. $a<b$: " a is less than b."
2. $a>b$: " a is greater than b."
3. $a=b$: " a is equal to b."

USE YOUR SUPERPOWERS

1. Look at these numbers. Circle all that belong to the set of natural numbers.

2. Look carefully at this situation, then answer the questions.

a. How can you order the cups to help people easily choose the size of their drink? Explain your answer.
\qquad
\qquad
\qquad
b. Which cup should Mente choose?

Explain your answer.
\qquad
\qquad
\qquad
\qquad

صمٌ
c. Compare your answers with two classmates'. Did they get the same answer?
\bigcirc
3. Work with a classmate and look at the nutritional tables for three bags of potato chips. Do each comparison using the method shown. Then, complete the problems.
a. Using a place value chart.

Salty Chips	
Calories	150 kcal
Fat	90 mg
Sodium	120 g
Sugars	1 g

Crunchy Chips	
Calories	105 kcal
Fat	110 mg
Sodium	110 g
Sugars	1 g

Wavy Chips	
Calories	250 kcal
Fat	105 mg
Sodium	80 g
Sugars	5 g

Product with the least sodium:
b. Using the number line.

Product with the least sugar:

c. You choose the method.

Product with the least fat: \qquad
d. Which of the bags of chips has the most calories?
e. We know that the calorie amounts of the first two bags of chips have the same digits (0,1 and 5). So, is it true that $150>105$?

WHEN SHE GETS HER MILKSHAKE, Guadalupe has a lithle accident...

- How many different shapes are in these floor tiles? \square
- Do you know the names of the shapes?

USE YOUR RULER AND A BLANK SHEET OF PAPER TO DRAW SHAPES WITH STRAIGHT SIDES. BEAR IN MIND THE FOLLOWING RULES.
A. They are closed shapes.
B. Each segment intersects exactly two other segments.
C. The segments only intersect at the endpoints.

- Draw a shape using segments where (B) is true and (C) is not true.

I have an idea! Let's design our own floor tiles!

- Draw a shape using segments where (C) is true but (B) is not true.

- Draw a shape using segments where both (A) and (B) are not true.

Guadalupe draws a floor tile and follows Mente's three rules. It is a closed shape; every side intersects only two other sides; and the sides only intersect at their endpoints.

Polygons

A polygon is a flat, closed shape made from line segments. Each segment intersects exactly two other segments, and the segments only intersect at their endpoints.

Mente also draws polygon's using line segments while following the three basic rules.

SUPERPOWER 5

Like most things, polygons can be classified. They can be classified as concave polygons or convex polygons.

응

- Look at the classification above. Can you describe the characteristics of concave and convex polygons? Talk to a classmate and write downyour answer.
\qquad

Concave and convex polygons

- A concave polygon has at least one interior angle that measures more than 180°.
- In a convex polygon all interior angles are
 less than 180°.

SUPERPOWER 6

One of the polygons Mente drew is very interesting. The honeycomb is the only shape where all the sides have the same length and all angles are equal in measure.

Regular polygons

Polygons that have all equal sides, and all interior angles with the same measurement, are called regular polygons.
4. Is it possible to draw a polygon with fewer than three sides?

Use graphs to explain your answer.
\qquad
\qquad
5. Use your ruler to draw creative polygons in your notebook. You can name them using the number of sides.

Triangle: 3 sides	Quadrilateral: 4 sides	Pentagon:5 sides
Hexagon: 6 sides	Heptagon: 7 sides	Octagon: 8 sides

6. Look carefully at these polygons. Match them with the correct label (Concave or Convex).

Concave

7. Look online to find the interior angle measurements of regular polygons with $3,4,5$, and 6 sides. Use your ruler and protractor to draw an example of one of them. Describe what you did. \square
8. How many sides do you think the regular polygon should have to be identical to a circle? Discuss your answer with your classmates.

